Модные тенденции 2011 специально для круглых животиков
Будущие мамы – это прежде всего женщины! А практически любая женщина очень хочет постоянно хорошо выглядеть. Если округлившийся живот уже не влезает в Вашу обычную одежду, то пришло время подумать про смену собственного гардероба.

Что идет сначала вычитание или сложение


Порядок выполнения действий в выражениях без скобок и со скобками

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Запишем.

8-3+4=5+4=9

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

8-3+4=8-7=1

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя.

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

38-10+6

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени.

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

24:3*2

В этом выражении имеются только действия умножения и деления – это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

18:2-2*3+12:3

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

    1   4  2  5    3

18:2-2*3+12:3

Вычислим значение выражения.

    1   4  2  5    3

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 - 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

     3   2      1

30 + 6 * (13 - 9)

Вычислим значение выражения.

3    2   1

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 - (20 - 7) +15

32 + 9 * (19 - 16)

2 * 9 - 18:3

Будем действовать по правилу. В выражении 43 - (20 - 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 - (20 - 7) +15 =43 - 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 - 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 - 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие – умножение, второе – деление, третье – вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

     4    3    1   2

37 + 9 - 6 : 2 * 3 =

    3       1     2

18 : (11 - 5) + 47=

   1  3       2

7 * 3 - (16 + 4)=

Рассуждаем так.

     3     4   1   2

37 + 9 - 6 : 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие – деление, второе – умножение. Третье действие должно быть сложение, четвертое – вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

     3 4  1  2

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

    3    1    2

18:(11-5)+47=

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – деление, третье – сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

    2    1    3

18:(11-5)+47=18:6+47=3+47=50

Рассуждаем далее.

  1  3     2

7*3-(16+4)=

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие – в скобках, второе – умножение, третье – вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

 

   2  3   1

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого – вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

   

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. – М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. – М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. – М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. – М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. – М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. – М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. – М.: «Экзамен», 2012.

 

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Festival.1september.ru (Источник).
  2. Sosnovoborsk-soobchestva.ru (Источник).
  3. Openclass.ru (Источник).

 

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

68+2-50+43

(36-18):(72:8)

35:5+6*2

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

25+30:6-3*5+45

15+6*5-48:6-10

20+8*5-45:9+12

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

 

interneturok.ru

Порядок выполнения математических действий | интернет проект BeginnerSchool.ru

Сегодня мы поговорим о порядке выполнения математических действий. Какие действия выполнять первыми? Сложение и вычитание, или умножение и деление. Странно, но у наших детей возникают проблемы с решением, казалось бы, элементарных выражений.

Итак, вспомним о том, что сначала вычисляются выражения в скобках

38 – (10 + 6) = 22;

1) в скобках: 10 + 6 = 16;

2) вычитание: 38 – 16 = 22.

Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.

10 ÷ 2 × 4 = 20;

Порядок выполнения действий:

1) слева направо, сначала деление: 10 ÷ 2 = 5;

2) умножение: 5 × 4 = 20;

10 + 4 – 3 = 11, т.е.:

1) 10 + 4 = 14;

2) 14 – 3 = 11.

Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.

18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7

Порядок выполнения действий:

1) 18 ÷ 2 = 9;

2) 2 × 3 = 6;

3) 12 ÷ 3 = 4;

4) 9 – 6 = 3; т.е. слева направо – результат первого действия минус результат второго;

5) 3 + 4 = 7; т.е. результат четвертого действия плюс результат третьего;

Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.

30 + 6 × (13 – 9) = 54, т.е.:

1) выражение в скобках: 13 – 9 = 4;

2) умножение: 6 × 4 = 24;

3) сложение: 30 + 24 = 54;

Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:

1)      действия, заключенные в скобках;

2)      умножение и деление;

3)      сложение и вычитание.

Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта“.

Понравилась статья - поделитесь с друзьями:

Подпишитесь на новости сайта:

Оставляйте пожалуйста комментарии в форме ниже

beginnerschool.ru

Порядок действий в математике, последовательность выполнения умножения, сложения, деления, вычитания, правила очередности арифметических действий

Основные операции в математике

Базовыми формами вычисления являются:
  • Сложение +
  • Умножение х или ∗
  • Вычитание -
  • Деление ÷ или /
К ним также можно отнести возведение в степень, однако с ним действуют те же законы, что и при умножении. Итак, последовательность расчетов регулируется следующими правилами. По умолчанию, при отсутствии дополнительных элементов, они выполняются в порядке написания.

15 - 3 + 7 = 19

При наличии скобок сначала выполняется действие, в них заключенное.

15 - (3 + 7) = 5

При появлении знаков или первыми выполняются они, лишь затем сложение или вычитание.

2 + 2 х 2 = 2 + 4 = 6

2 + 2 ÷ 2 = 2 + 1 = 3

Скобки могут частично ослабить эти правила, так как действие в них заключенное всегда выполняется в первую очередь.

(2 + 2) х 2 = 4 х 2 = 8

(2 + 2) ÷ 2 = 4 ÷ 2 = 2

Если в скобки заключено сложное выражение, внутри них работают стандартные правила.

(4 + 7 - 1) + 5 = (11 - 1) + 5 = 15

(5 + 3 х 2) - 4 = (5 + 6) - 4 = 11 - 4 = 7

При появлении двух и более знаков или нужно учитывать их очередность.

5 х 2 - 8 ÷ 4 = 10 - 2 = 8

Решение  примеров с множественными скобками

Вариант 1:

5 + 8 ÷ 2 + 3 х (15 - 6 х 2 + 1) + 3 х (6 - 4) = ?

Распишем все расчеты поэтапно:
  1. 6 х 2 = 12
  2. 15 - 12 + 1 = 4
  3. 6 - 4 = 2
  4. 8 ÷ 2=4
Получаем сокращенную версию:

5 + 4 + 3 х 4 + 3 х 2 = ?

Снова расписываем:
  1. 3 х 4 = 12
  2. 3 х 2 = 6
Еще сократили: 5 + 4 + 12 + 6 = 27 Вариант 2: 3 + 2 х [10 - 3 х (6 ÷ 2)] + 1 = ? Сокращаем:
  1. 6 ÷ 2 = 3
  2. 10 - 3 х 3 = 10 - 9 = 1
Получили: 3 + 2 х 1 + 1 = 3 + 2 + 1 = 6 Вариант 3: {50 - [11 - (5 + 2)} х 4 = ? Сокращаем:
  1. 5 + 2 = 7
  2. 11 - 7 = 4
  3. 50 - 4 = 46
  4. 46 х 4 = 184
Ответ: 184

Законы сложения и умножения Также описывают общие принципы проведения вычислений.

Переместительный:

a + b = a + b

Сочетательный:

(a + b) + c = a + (b + c)

a х (b х c) = (a х b) х c

Распределительный:

a х (b + c)=a х b + a х c

(a + b) х c= a х c + b х c

Законы нуля:

a + 0 = a

a х 0=0

Правило единицы:

a х 1 = a

Знание этих законов поможет проводить необходимые вычисления быстрее.
Важно! В случае замены + и х  на - и ÷ соответственно эти правила перестают действовать.
Несмотря на легкость понимания, очередность выполнения операций жизненно важна, так как все сложные формулы (логарифмы, интегралы и так далее) по сути представляют собой сокращенную форму написания длинной цепи простых вычислений. Чтобы закрепить материал статьи, рекомендуем посмотреть видео ниже. Рекомендуем посмотреть видео о порядке дейсивий в математике

nauka.club

Зубодробительная задачка с очень простой математикой

В интер­не­те мно­го спо­ров про такие при­ме­ры, поэто­му мы реши­ли разо­брать­ся, какие ошиб­ки совер­ша­ют чаще все­го и поче­му мно­гие счи­та­ют непра­виль­но. Для реше­ния нам пона­до­бят­ся три мате­ма­ти­че­ских пра­ви­ла:

  1. То, что в скоб­ках, выпол­ня­ет­ся в первую оче­редь. Если ско­бок несколь­ко, они выпол­ня­ют­ся сле­ва напра­во.
  2. При отсут­ствии ско­бок мате­ма­ти­че­ские дей­ствия выпол­ня­ют­ся сле­ва напра­во, сна­ча­ла умно­же­ние и деле­ние, потом — сло­же­ние и вычи­та­ние.
  3. Меж­ду мно­жи­те­лем и скоб­кой (или дву­мя скоб­ка­ми) может опус­кать­ся знак умно­же­ния.

Раз­бе­рём подроб­нее, что это зна­чит в нашем слу­чае.

1. То, что в скоб­ках, выпол­ня­ет­ся в первую оче­редь. То есть в нашем при­ме­ре, вне зави­си­мо­сти от чего угод­но, сна­ча­ла схлоп­нут­ся скоб­ки:

8 / 2(2 + 2) → 8 / 2(4)

2. Меж­ду чис­лом и скоб­кой мож­но опу­стить знак умно­же­ния. У нас перед скоб­кой двой­ка, то есть мож­но сде­лать такую заме­ну:

8 / 2(4) → 8 / 2 × 4

3. Мате­ма­ти­че­ские дей­ствия при отсут­ствии ско­бок выпол­ня­ют­ся сле­ва напра­во: как при чте­нии, сна­ча­ла умно­же­ние и деле­ние, потом — сло­же­ние и вычи­та­ние. Умно­же­ние и деле­ние име­ют оди­на­ко­вый при­о­ри­тет. Нет тако­го, что сна­ча­ла все­гда дела­ет­ся умно­же­ние, затем деле­ние, или наобо­рот. Со сло­же­ни­ем и вычи­та­ни­ем то же самое.

Неко­то­рые счи­та­ют, что раз мно­жи­те­ли были напи­са­ны близ­ко друг к дру­гу (когда там сто­я­ли скоб­ки), то оно выпол­ня­ет­ся в первую оче­редь, ссы­ла­ясь при этом на раз­ные мето­ди­че­ские посо­бия. На самом деле это не так, и нет тако­го скры­то­го умно­же­ния, кото­рое име­ет при­о­ри­тет над дру­гим умно­же­ни­ем или деле­ни­ем. Это такое же умно­же­ние, как и осталь­ные, и оно дела­ет­ся в общем поряд­ке — как и при­ня­то во всём мате­ма­ти­че­ском мире.

Полу­ча­ет­ся, что нам сна­ча­ла надо сло­жить 2 + 2 в скоб­ках, потом 8 раз­де­лить на 2, и полу­чен­ный резуль­тат умно­жить на то, что в скоб­ках:

8 / 2 × (2 + 2) = 8 / 2 × 4 = 4 × 4 = 16

Кста­ти, если на айфоне запи­сать это выра­же­ние точ­но так же, как в усло­вии, теле­фон тоже даст пра­виль­ный ответ.

А инже­нер­ный каль­ку­ля­тор на Windows 10 так запи­сы­вать не уме­ет и про­пус­ка­ет первую двойку-множитель. Попро­буй­те сами 🙂

Тут в тред вры­ва­ют­ся мате­ма­ти­ки и с воп­ля­ми «Шустеф!» пояс­ня­ют кри­ком:

«В АЛГЕБРЕ ТОТ ЖЕ ПОРЯДОК ДЕЙСТВИЙ, ЧТО И В АРИФМЕТИКЕ, но есть исклю­че­ние: в алгеб­ре знак умно­же­ния свя­зы­ва­ет ком­по­нен­ты дей­ствия силь­нее, чем знак деле­ния, поэто­му знак умно­же­ния опус­ка­ет­ся. Напри­мер, a:b·c= a: (b·c)».

Этот текст из «Мето­ди­ки пре­по­да­ва­ния алгеб­ры», курс лек­ций, Шустеф М. Ф., 1967 год. (стр. 43)

Раз в спор­ном при­ме­ре знак умно­же­ния опу­щен, то спор­ный при­мер алгеб­ра­и­че­ский, а зна­чит, сна­ча­ла умно­жа­ем 2 на 4, а потом 8 делим на 8!


Та самая цита­та.

А вот как на это отве­ча­ют те, кто дей­стви­тель­но в теме и не ленит­ся пол­но­стью посмот­реть пер­во­ис­точ­ник:

«Для устра­не­ния недо­ра­зу­ме­ний В. Л. Гон­ча­ров ука­зы­ва­ет, что пред­по­чти­тель­нее поль­зо­вать­ся в каче­стве зна­ка деле­ния чер­той и ста­вить скоб­ки [87]. П. С. Алек­сан­дров и А. Н. Кол­мо­го­ров [59] пред­ло­жи­ли изме­нить поря­док дей­ствий в ариф­ме­ти­ке и решать, напри­мер, так: 80:20×2=80:40=2 вме­сто обыч­но­го: 80:20×2=4×2=8. Одна­ко это пред­ло­же­ние не нашло под­держ­ки».

Если апел­ли­ро­вать к Фри­де Мак­совне Шустеф, то выхо­дит, что:

  1. В. Л. Гон­ча­ров гово­рит так: «Ребя­та, исполь­зуй­те чер­ту и ставь­те скоб­ки, что­бы ни у кого не было вопро­сов про при­о­ри­тет».
  2. Если у нас всё же бит­ва ариф­ме­ти­ки и алгеб­ры, то, по П. С. Алек­сан­дро­ву и А. Н. Кол­мо­го­ро­ву, при­мер нуж­но решать сле­ва напра­во, как обыч­но. Они, конеч­но, пред­ло­жи­ли решать такое по-другому, но науч­ное сооб­ще­ство их не под­дер­жа­ло.

Самое инте­рес­ное, что даль­ше в при­ме­рах Фри­да Мак­сов­на поль­зу­ет­ся как раз пра­виль­ным поряд­ком дей­ствий, объ­яс­няя реше­ние. Даже там, где есть умно­же­ние на скоб­ку с опу­щен­ным зна­ком, она выпол­ня­ет дей­ствия сле­ва напра­во.


Пол­ная цита­та из Шустеф, кото­рая, ока­зы­ва­ет­ся, име­ет в виду совсем не то.

thecode.media

Подскажите мне пожалуйста что то я совсем запуталась с дочерью в примере что первое делается сложение или умножение ?

умножение, деление, сложение, вычитание, если есть скобки, то сначала то, что в скобках

умножение потом сложение!!!!

по очереди. как идет в примере так и делайте например 5+7*2 пять плюс семь а потом умножаем

Сначала умножение. Выкладывайте примеры. Здесь помогут.

Если действия в скобках, то они первые! Если нет скобок, то сначала умножение и деление, затем сложение и вычитание!

Сначала всегда делается умножение/деление, затем сложение/вычитание. Но если действия сложение/вычитание в скобках, то они выполняются первые.

сначала умножение и деление (а так же действия в скобках) , потом сложение и вычитание

Сначала умножение, потом сложение. Но: сначала в скобках, потом - вне скобок...

Конечно сначало умножение (деление) , а, затем уже сложение (вычитание) Мне стало смешно (извините) вот почему: Надя Хлебалина отвечает - как идет в примере так и делайте например 5+7*2 пять плюс семь а потом умножаем - НЕТ, ГОВОРЮ Я!! ! И не забывайте про скобки, вообще, нужно было пример выложить, здесь столько людей, что хоть кто-нить да поможет вам=)

ептиль шмоптиль конечноже умножение!

умножение, деление, сложение, вычитание, если есть скобки, то сначала то, что в скобках

1)Скобки 2)Умножение или деление (слева на право) 3)Плюс или минус (слева на право)

Умножать! 5+7*2=19

touch.otvet.mail.ru

Порядок выполнения действий / Справочник по математике для начальной школы

  1. Главная
  2. Справочники
  3. Справочник по математике для начальной школы
  4. Порядок выполнения действий

В данном разделе мы познакомимся с порядком действий, с выражениями со скобками и без них.

 

1) Если тебе нужно выполнить только сложение и вычитание или только умножение и деление, то все действия выполняют по порядку слева направо. 

Например, 

В числовом выражении 3 арифметических действия: сложение, вычитание и вычитание.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни умножения ни деления, действия выполняют по порядку слева направо:

Вычисляем:

1) 10 + 15 = 25

2) 25 - 6 = 19

3) 19 - 8 = 11

Полностью пример записываем так:

10 + 15 - 6 - 8 = 25 - 6 - 8 = 19 - 8 = 11


Например, 

В числовом выражении 3 арифметических действия: деление, умножение и деление.

Определим порядок действий и запишем их над арифметическими знаками: так как нет ни сложения ни вычитания, действия выполняют по порядку слева направо:

Вычисляем:

1) 15 : 5 = 3

2) 3 • 4 = 12

3) 12 : 6 = 2

Полностью пример записываем так:

15 : 5 • 4 : 6 = 3 • 4 : 6 = 12 : 6 = 2


2) Если тебе нужно выполнить несколько арифметических действий (сложение, вычитание, умножение и деление), то сначала выполняют умножение и деление по порядку слева направо, а затем сложение и вычитание по порядку слева направо. 

Например, 

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим деление, потом умножение, затем вычитание и сложение.

1)15 : 3 = 5

2) 6 • 8 = 48

3) 10 - 5 = 5

4) 5 + 48 = 53

Полностью пример записываем так:

10 - 15 : 3 + 6 • 8 = 10 - 5 + 6 • 8 = 10 - 5 + 48 = 5 + 48 = 53


3) Если в выражении есть скобки, то сначала выполняют действия в скобках, но обязательно учитывать первое и второе правила.

Например,

В числовом выражении 4 арифметических действия: вычитание, деление, сложение и умножение.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим вычитание в скобках, затем деление, потом умножение и сложение.

1) 25 - 10 = 15

2) 15 : 3 = 5

3) 6 • 8 = 48

4) 5 + 48 = 53

Полностью пример записываем так:

(25 - 10) : 3 + 6 • 8 = 15 : 3 + 6 • 8 = 5 + 6 • 8 = 5 + 48 = 53


Например

В числовом выражении 4 арифметических действия: сложение, деление, сложение и деление.

Определим порядок действий и запишем их над арифметическими знаками: сначала производим действия в скобках (деление, затем сложение), затем деление, потом сложение.

1) 12 : 4 = 3

2) 6 + 3 = 9

3) 18 : 9 = 2

4) 42 + 2 = 44

Полностью пример записываем так:

42 + 18 : (6 + 12 : 4) = 42 + 18 : (6 + 3) = 42 + 18 : 9 = 42 + 2 = 44

Вывод: 

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Скобки

Правило встречается в следующих упражнениях:

2 класс

Страница 68. Вариант 1. Тест 1, Моро, Волкова, Проверочные работы

Страница 26, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 51, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 61, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 66, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 73, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 98, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 99, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 50, Моро, Волкова, Рабочая тетрадь, 2 часть

Страница 68, Моро, Волкова, Рабочая тетрадь, 2 часть

3 класс

Страница 44, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 62, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 37, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 11. Вариант 2. № 1, Моро, Волкова, Проверочные работы

Страница 16. Вариант 1. № 3, Моро, Волкова, Проверочные работы

Страница 35. Вариант 2. № 3, Моро, Волкова, Проверочные работы

Страница 6, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 8, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 46, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 29, Моро, Волкова, Рабочая тетрадь, 2 часть

4 класс

Страница 20, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 52, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 55, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 90, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 1 часть

Страница 80, Моро, Волкова, Рабочая тетрадь, 1 часть

Страница 41. Вариант 2. Тест 1, Моро, Волкова, Проверочные работы

Страница 4, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 14, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 49, Моро, Волкова, Степанова, Бантова, Бельтюкова, Учебник, 2 часть

Страница 35, Моро, Волкова, Рабочая тетрадь, 2 часть

5 класс

Задание 74, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 191, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 163, Мерзляк, Полонский, Якир, Учебник

Упражнение 253, Мерзляк, Полонский, Якир, Учебник

Упражнение 259, Мерзляк, Полонский, Якир, Учебник

Упражнение 261, Мерзляк, Полонский, Якир, Учебник

Упражнение 455, Мерзляк, Полонский, Якир, Учебник

Упражнение 456, Мерзляк, Полонский, Якир, Учебник

Упражнение 461, Мерзляк, Полонский, Якир, Учебник

Упражнение 4, Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 18, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 92, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 373, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 378, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 400, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 411, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 413, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 425, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 445, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 454, Виленкин, Жохов, Чесноков, Шварцбург, Учебник


© budu5.com, 2020

Пользовательское соглашение

Copyright

budu5.com

Какие действия в математике выполняются первыми из "+","-",":","*" ?

умножение и деление потом сложение и вычитание

"*", ":", "+", "-" смотря какой пример

1 умножение, деление 2 +-

Всегда умножение и деление. Если есть скобки, то сначала рассчитывается выражение в скобках.

сначало деление и умножение (что раньше в примере стоит) , потом вычитание и сложение (чё раньше стоит) , а если скобки есть то в скобках сначало

Умножение и деление, но если есть скобки то любое действие в скобках, потом умножение и деление, а потом уже сложение и вычитание

Сначала в любом задании выполняется "*"и ":" по порядку следования затем "+" и "-" так же по порядку. Предположим "23+8*2 - 6:3" здесь сначала "8*2" затем "6:3" и лиш после этого 23+16(где 16 полученный резултат *) и минус 2(полученный результат от 6:3)

Первыми идут "умножение" и "деление" (без учета следования) , а потом уже "суммирование" или "вычитание".

Сначала умножение и деление потом сложение и вычетание, если только сложение и вычетание не стоят в скобках. Тогда оно выполняется первым.

500-37*4=500-148=352 руб сдача

6.803+0.4-0.532:76*29-1.99=

ллооооооЛ - СМОТРИ ЗДЕСЬ

сначало умножение, потом деление

Сначала (если без скобок) умножение и деление. Если есть скобки - сначала в скобках, потом умножение и деление. После скобок, умножения и деления идёт сложение и вычитание (опять же, если скобок нет). Если есть скобки и в них сложение, то всё равно первое в скобках выполняется.

сначала умножение и деление, потом складывание и вычитание

touch.otvet.mail.ru

Что сначала - сложение или умножение: правила, порядок выполнения действия и рекомендации

С самого начала следует напомнить, чтобы потом не путаться: есть цифры – их 10. От 0 до 9. Есть числа, и они состоят их цифр. Чисел бесконечно много. Точно больше, чем звезд на небе.

Математическое выражение − это записанное с помощью математических символов наставление, какие действия нужно произвести с числами, чтобы получить результат. Не «выйти» на искомый результат, как в статистике, а узнать, сколько их точно было. А вот чего и когда было − уже не входит в сферу интересов арифметики. При этом важно не ошибиться в последовательности действий, что сначала - сложение или умножение? Выражение в школе иногда называют «пример».

Сложение и вычитание

Какие же действия можно произвести с числами? Есть два базовых. Это сложение и вычитание. Все остальные действия построены на этих двух.

Самое простое человеческое действие: взять две кучки камней и смешать их в одну. Это и есть сложение. Для того чтобы получить результат такого действия, можно даже не знать, что такое сложение. Достаточно просто взять кучку камней у Пети и кучку камней у Васи. Сложить все вместе, посчитать все заново. Новый результат последовательного счета камней из новой кучки − это и есть сумма.

Точно так же можно не знать, что такое вычитание, просто взять и разделить кучу камней на две части или забрать из кучи какое-то количество камней. Вот и останется в куче то, что называется разностью. Забрать можно только то, что есть в куче. Кредит и прочие экономические термины в данной статье не рассматриваются.

Чтобы не пересчитывать каждый раз камни, ведь бывает, что их много и они тяжелые, придумали математические действия: сложение и вычитание. И для этих действий придумали технику вычислений.

Сумма двух любых цифр тупо заучиваются без всякой техники. 2 плюс 5 равно семь. Посчитать можно на счетных палочках, камнях, рыбьих головах – результат одинаковый. Положить сначала 2 палочки, потом 5, а потом посчитать все вместе. Другого способа нет.

Те, кто поумнее, обычно это кассиры и студенты, заучивают больше, не только сумму двух цифр, но и суммы чисел. Но самое главное, они могут складывать числа в уме, используя разные методики. Это называется навыком устного счета.

Для сложения чисел, состоящих из десятков, сотен, тысяч и еще больших разрядов, используют специальные техники − сложение столбиком или калькулятор. С калькулятором можно не уметь складывать даже цифры, да и читать дальше не нужно.

Сложение столбиком −­­­­­­ это метод, который позволяет складывать большие (многоразрядные) числа, выучив только результаты сложения цифр. При сложении столбиком последовательно складываются соответствующие десятичные разряды двух чисел (то есть фактически две цифры), если результат сложения двух цифр превышает 10, то учитывается только последний разряд этой суммы – единицы числа, а к сумме следующих разрядов добавляется 1.

Умножение

Математики любят группировать похожие действия для упрощения расчетов. Так и операция умножения является группировкой одинаковых действий – сложения одинаковых чисел. Любое произведение N x M − есть N операций сложения чисел M. Это всего лишь форма записи сложения одинаковых слагаемых.

Для вычисления произведения используется такой же метод – сначала тупо заучивается таблица умножения цифр друг на друга, а потом применяется метод поразрядного умножения, что называется «в столбик».

Что сначала - умножение или сложение?

Любое математическое выражение – это фактически запись учетчика «с полей» о результатах каких-либо действий. Допустим, сбора урожая помидоров:

  • 5 взрослых работников собрали по 500 помидоров каждый и выполнили норму.
  • 2 школьников не ходили на уроки математики и помогали взрослым: собрали по 50 помидоров, норму не выполнили, съели 30 помидоров, надкусили и испортили еще 60 помидоров, 70 помидоров было изъято из карманов помощников. Зачем брали с собой их в поле – непонятно.

Все помидоры сдавали учетчику, он укладывал их по кучкам.

Запишем результат «сбора» урожая в виде выражения:

  • 500 + 500 + 500 + 500 + 500 - это кучки взрослых работников;
  • 50 + 50 – это кучки малолетних работников;
  • 70 – изъято из карманов школьников (испорченное и надкусанное в зачет результата не идет).

Получаем пример для школы, запись учетчика результатов работы:

500 + 500 +500 +500 +500 + 50 +50 + 70 =?;

Здесь можно применить группировку: 5 кучек по 500 помидоров − это можно записать через операцию умножения: 5 ∙ 500.

Две кучки по 50 – это тоже можно записать через умножение.

И одна кучка 70 помидоров.

5 ∙ 500 + 2 ∙ 50 + 1 ∙ 70 =?

И что делать в примере сначала − умножение или сложение? Так вот, складывать можно только помидоры. Нельзя сложить 500 помидоров и 2 кучки. Они не складываются. Поэтому сначала нужно всегда все записи привести к базовым операциям сложения, то есть в первую очередь вычислить все операции группировки-умножения. Совсем простыми словами - сначала выполняется умножение, а сложение уже потом. Если умножить 5 кучек по 500 помидоров каждая, то получится 2500 помидоров. А дальше их уже можно складывать с помидорами из других кучек.

2500 + 100 + 70 = 2 670

При изучении ребенком математики нужно донести до него, что это инструмент, используемый в повседневной жизни. Математические выражения являются, по сути (в самом простом варианте начальной школы), складскими записями о количестве товаров, денег (очень легко воспринимается школьниками), других предметов.

Соответственно, любое произведение – это сумма содержимого некоторого количества одинаковых емкостей, ящиков, кучек, содержащих одинаковое количество предметов. И что сначала умножение, а сложение потом, то есть сначала начала вычислить общее количество предметов, а затем уже складывать их между собой.

Деление

Операция деления отдельно не рассматривается, она обратная умножению. Нужно что-то распределить по коробкам, так, чтобы во всех коробках было одинаковое заданное количество предметов. Самый прямой аналог в жизни – это фасовка.

Скобки

Большое значение в решении примеров имеют скобки. Скобки в арифметике – математический знак, используемый для регулирования последовательности вычислений в выражении (примере).

Умножение и деление имеют приоритет выше, чем сложение и вычитание. А скобки имеют приоритет выше, чем умножение и деление.

Все, что записано в скобках, вычисляется в первую очередь. Если скобки вложенные, то сначала вычисляется выражение во внутренних скобках. И это непреложное правило. Как только выражение в скобках вычислено, скобки пропадают, а на их месте возникает число. Варианты раскрытия скобок с неизвестными здесь не рассматриваются. Так делают до тех пор, пока все они не исчезнут из выражения.

((25-5) : 5 + 2) : 3 =?

  1. Это как коробочки с конфетами в большом мешке. Сначала нужно раскрыть все коробочки и ссыпать в большой мешок: (25 – 5 ) = 20. Пять конфет из коробочки сразу заслали отличнице Люде, которая приболела и в празднике не участвует. Остальные конфеты − в мешок!
  2. Потом связать конфеты в пучки по 5 штук: 20 : 5 = 4.
  3. Потом добавить в мешок еще 2 пучка конфет, чтобы можно было поделить на троих детей без драки. Признаки деления на 3 в данной статье не рассматриваются.

(20 : 5 + 2) : 3 = (4 +2) : 3 = 6 : 3 = 2

Итого: трем детям по два пучка конфет (по пучку в руку), по 5 конфет в пучке.

Если вычислить первые скобки в выражении и переписать все заново, пример станет короче. Метод не быстрый, с большим расходом бумаги, зато удивительно эффективный. Заодно тренирует внимательность при переписывании. Пример приводится к виду, когда остается только один вопрос, сначала умножение или сложение без скобок. То есть к такому виду, когда скобок уже и нет. Но ответ на этот вопрос уже есть, и нет смысла обсуждать, что идет сначала - умножение или сложение.

«Вишенка на торте»

И напоследок. К математическому выражению не применимы правила русского языка – читать и выполнять слева направо:

5 – 8 + 4 = 1;

Это простенький пример может довести до истерики ребенка или испортить вечер его маме. Потому что именной ей придется объяснять второкласснику, что бывают отрицательные числа. Или рушить авторитет «МарьиВановны», которая сказала, что: «Нужно слева направо и по порядку».

«Совсем вишня»

В Сети гуляет пример, вызывающий затруднения у взрослых дяденек и тетенек. Он не совсем по рассматриваемой теме, что сначала - умножение или сложение. Он вроде как про то, что сначала выполняете действие в скобках.

От перестановки слагаемых сумма не изменяется, от перестановки множителей тоже. Нужно просто записывать выражение так, чтобы не было потом мучительно стыдно.

6 : 2 ∙ (1+2) = 6 ∙ ½ ∙ (1+2) = 6 ∙ ½ ∙ 3 = 3 ∙ 3 = 9

Теперь точно все!

fb.ru

Правила сложения и вычитания. - таблицы Tehtab.ru

Правила сложения и вычитания.

1. От перемены мест слагаемых сумма не изменится (коммутативное свойство сложения)

Пример:

13+25=38, можно записать как: 25+13=38

2. Результат сложения не изменится, если соседние слагаемые заменить их суммой (ассоциативное свойство сложения).

Пример:

10+13+3+5=31 можно записать как: 23+3+5=31; 26+5=31; 23+8=31 и т.д.

3. Единицы складываются с единицами, десятки с десятками и т.д.

Пример:

34+11=45 (3 десяка плюс еще 1 десяток; 4 единицы плюс 1 единица).

4. Единицы вычитаются из единиц, десятки из десятков и т.д.

Пример:

53-12=41 (3 единицы минус 2 единицы; 5 десятков минус 1 десяток)

примечание: 10 единиц составляют один десяток. Это надо помнить при вычитании, т.к. если количество единиц у вычитаемого больше, чем у уменьшаемого, то мы можем "занять" один десяток у уменьшаемого.

Пример:

41-12=29 (Для того чтобы и 1 вычесть 2, мы сначала должны "занять" единицу у десятков, получаем 11-2=9; помним, что у уменьшаемого остается на 1 десяток меньше, следовательно, остается 3 десятка и от него отнимается 1 десяток. Ответ 29).

5. Если из суммы двух слагаемых вычесть одно из них, то получится второе слагаемое.

Это значит, что сложение можно проверить с помощью вычитания.

Пример:

42+7=49

Для проверки из суммы вычитают одно из слагаемых: 49-7=42 или 49-42=7

Примечание:

Если в результате вычитания вы не получили одно из слагаемых, значит в вашем сложении была допущена ошибка.

6. Если к разности прибавить вычитаемое, то получится уменьшаемое.

Это значит, что вычитание можно проверить сложением.

Пример:

69-50=19

Для проверки к разности прибавим вычитаемое: 19+50=69.

Примечание:

Если в результате описанной выше процедуры вы не получили уменшьшаемое, значит в вашем вычитании была допущена ошибка.

tehtab.ru


Смотрите также


Семья

Семейные отношения
Каждая отдельная семья являет собой определенную социально-психологическую группу, которая в свою очередь складывается на основе интимных и исключительно доверительных отношений между двумя супругами, а также родителями и детьми. Её общая социальная активность, структура, а также составляющая нравственно-психологическая атмосфера напрямую зависят не только лишь от общих условий и установленных закономерностей, но также от тех довольно специфических обстоятельств, в которых формируется семья, а также живёт и в полной мере функционирует.
Рождение ребенка – испытание на прочность всей семьи
В сказках, как известно, все невзгоды героев заканчиваются свадьбой. А в жизни со свадьбы все только лишь начинается.

Опрос

Полезный для Вас наш сайт?

Да
Нет
Очень полезный
Ничего интересного
Мне все равно