Модные тенденции 2011 специально для круглых животиков
Будущие мамы – это прежде всего женщины! А практически любая женщина очень хочет постоянно хорошо выглядеть. Если округлившийся живот уже не влезает в Вашу обычную одежду, то пришло время подумать про смену собственного гардероба.

Как объяснить ребенку математику 2 класс


12 простейших способов объяснить ребенку математику

Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

В мире существует великое множество увлекательных наук. Мы в AdMe.ru убеждены, что все они безумно интересны, но не все нам объясняли интересно и с фантазией. Мы решили ненадолго снова стать детьми и представить, как бы нам хотелось получать математические знания.

Всем стоять, конфеты на столе

Такая математика придется по вкусу любому ребенку. Заготовьте заранее листы с различным количеством кружков и выкладывайте вместе различные цифры. Конфеты можно заменить на любую интересную малышу еду — от ягод и фруктов до так весело хрустящих сухариков.

Веселые прищепки

Мама вешает белье? Нет, сегодня она принесла разноцветные забавные прищепки для другого. Нарисуйте на палочках для мороженого различное количество яблок, а на прищепках напишите цифры. Ребенку будет интересно подбирать палочку к прищепке.

Зефирная математика

Этот способ понравится всем сладкоежкам. Вырежьте из бумаги большую кружку и добавляйте в нее зефирок столько, сколько точек выпадет на костях.

Музыкальная пауза

Великолепная идея для тех, кто готов потерпеть немного какофонии во имя арифметики. Присвойте каждой клавише определенную цифру (здесь вам помогут стикеры) и попросите ребенка составить, к примеру, цифру 10.

Вырастим свой сад

Вырастить свой собственный небольшой сад помогут ненужные помпоны. Можно также использовать кружочки из обыкновенной губки, покрашенные в разные цвета. А зимними вечерами можно украсить елочку.

Больше или меньше?

Кто из нас в школе не сражался с коварным «больше / меньше»? Веселый дружелюбный крокодильчик поможет ребенку разобраться, что к чему.

Наряди снеговика

Зимнее развлечение для долгих вечеров. Меняя шляпки для снеговика, ребенку каждый раз нужно будет наряжать его в новый кафтан. Придется повозиться, чтобы подготовить все к игре, зато она останется с вами надолго.

Яблочные дроби

www.adme.ru

Как объяснить ребенку деление столбиком во 2-3 классе

Как объяснить ребенку деление столбиком? Как дома самостоятельно отработать навык деления в столбик, если в школе ребенок что-то не усвоил? Делить столбиком учат во 2-3 классе, для родителей, конечно, это пройденный этап, но при желании можно вспомнить правильную запись и объяснить доступно своему школьнику то, что понадобится ему в жизни.

xvatit.com

Что должен знать ребенок 2-3 класса, чтобы научиться делить в столбик?

Как правильно объяснить ребенку 2-3 класса деление столбиком, чтобы в дальнейшем у него не было проблем? Для начала, проверим, нет ли пробелов в знаниях. Убедитесь, что:

  • ребенок свободно выполняет операции сложения и вычитания;
  • знает разряды чисел;
  • знает назубок таблицу умножения.

Как объяснить ребенку смысл действия «деление»?

  • Ребенку нужно объяснить все на наглядном примере.

Попросите разделить что-либо между членами семьи или друзьями. Например, конфеты, кусочки торта и т.п. Важно, чтобы ребенок понял суть — разделить нужно поровну, т.е. без остатка. Потренируйтесь на разных примерах.

Допустим, 2 группы спортсменов должны занять места в автобусе. Известно сколько спортсменов в каждой группе и сколько всего мест в автобусе. Нужно узнать, сколько билетов нужно купить одной и второй группе. Или 24 тетради нужно раздать 12 ученикам, сколько достанется каждому.

  • Когда ребенок усвоит суть принципа деления, покажите математическую запись этой операции, назовите компоненты.
  • Объясните, что деление – это операция противоположная умножению, умножение наизнанку.

Удобно показать взаимосвязь деления и умножения на примере таблицы.

Например, 3 умножить на 4 равно 12. 
3 — это первый множитель;
4 — второй множитель;
12 — произведение (результат умножения).

Если 12 (произведение) разделить на 3 (первый множитель), получим 4 (второй множитель).

Компоненты при делении называются иначе:

12 — делимое;
3 — делитель;
4 — частное (результат деления).

Как объяснить ребенку деление двузначного числа на однозначное не в столбик?

Нам, взрослым, проще «по старинке» записать «уголком» — и дело с концом. НО! Дети еще не проходили деление в столбик, что делать? Как научить ребенка делить двузначное число на однозначное не используя запись столбиком?

Возьмем для примера 72:3. 

Все просто! Раскладываем 72 на такие числа, которые легко устно разделить на 3: 
72=30+30+12.

Все сразу стало наглядно: 30 мы можем разделить на 3, и 12 ребенок легко разделит на 3.
Останется только сложить результаты, т.е. 72:3=10 (получили, когда 30 разделили на 3) + 10 (30 разделили на 3) + 4 (12 разделили на 3). 

72:3=24
Мы не использовали деление в столбик, но ребенку был понятен ход рассуждений, и он выполнил вычисления без труда.

После простых примеров можно переходить к изучению деления в столбик, учить ребенка правильно записывать примеры «уголком». Для начала используйте только примеры на деление без остатка.

Как объяснить ребенку деление в столбик: алгоритм решения

Большие числа сложно делить в уме, проще использовать запись деления столбиком. Чтобы научить ребенка правильно выполнять вычисления, действуйте по алгоритму:

  • Определить, где в примере делимое и делитель. Попросите ребенка назвать числа (что на что мы будем делить).

213:3
213 — делимое
3 — делитель

  • Записать делимое — «уголок» — делитель.

  • Определить, какую часть делимого мы можем использоваться, чтобы разделить на заданное число.

Рассуждаем так: 2 не делится на 3, значит — берем 21.

  • Определить, сколько раз делитель «помещается» в выбранной части.

21 разделить на 3 — берем по 7. 

  • Умножить делитель на выбранное число, результат записать под «уголком». 

7 умножить на 3 — получаем 21. Записываем.

  • Найти разницу (остаток).

На этом этапе рассуждений научите ребенка проверять себя. Важно, чтобы он понял, что результат вычитания ВСЕГДА должен быть меньше делителя. Если вышло не так, нужно увеличить выбранное число и выполнить действие еще раз.

  • Повторить действия, пока в остатке не окажется 0.

Дальше можно взять пример посложнее, чтобы убедиться, что ребенок усвоил правильную запись и алгоритм рассуждений.

Как правильно рассуждать, чтобы научить ребенка 2-3 класса делить столбиком

Как объяснить ребенку деление 204:12=?
1. Записываем столбиком.
204 — делимое, 12 — делитель.

2. 2 не делится на 12, значит, берем 20.
3. Чтобы разделить 20 на 12 берем по 1. Записываем 1 под «уголком».
4. 1 умножить на 12 получим 12. Записываем под 20.
5. 20 минус 12 получим 8.
Проверяем себя. 8 меньше 12 (делителя)? Ок, все верно, идем дальше.

6. Рядом с 8 пишем 4. 84 разделить на 12. На сколько нужно умножить 12, чтобы получить 84?
Сразу сложно сказать, попробуем действовать методом подбора.
Возьмем, например, по 8, но пока не записываем. Считаем устно: 8 умножить на 12 получится 96. А у нас 84! Не подходит.
Пробуем поменьше… Например, возьмем по 6. Проверяем себя устно: 6 умножить на 12 равно 72. 84-72=12. Мы получили такое же число, как наш делитель, а должно быть или ноль, или меньше 12. Значит, оптимальная цифра 7! 

7. Записываем 7 под «уголок» и выполняем вычисления. 7 умножить на 12 получим 84.
8. Записываем результат в столбик: 84 минус 84 равно ноль. Ура! Мы решили правильно!

Итак, вы научили ребенка делить столбиком, осталось теперь отработать этот навык, довести его до автоматизма.

Почему детям сложно научиться делить в столбик? 

Помните, что проблемы с математикой возникают от неумения быстро делать простые арифметические действия. В начальной школе нужно отработать и довести до автоматизма сложение и вычитание, выучить «от корки до корки» таблицу умножения. Все! Остальное — дело техники, а она нарабатывается с практикой.

Будьте терпеливы, не ленитесь лишний раз объяснить ребенку то, что он не усвоил на уроке, нудно, но дотошно разобраться в алгоритме рассуждений и проговорить каждую промежуточную операцию прежде, чем озвучить готовый ответ. Дайте дополнительные примеры на отработку навыков, поиграйте в математические игры — это даст свои плоды и вы увидите результаты и порадуетесь успехам чада очень скоро. Обязательно покажите, где и как можно применить полученные знания в повседневной жизни.

Уважаемые читатели! Расскажите, как вы учите ваших детей делить в столбик, с какими сложностями приходилось сталкиваться и какими способами вы их преодолели.

rastishka.by

Учим ребенка решать задачи по математике в несколько шагов.

В период школьного обучения детям приходится решать различные задачи, вначале простейшие, по математике, затем более сложные, по химии, физике, геометрии. Как правило, многие с ними не справляются, поэтому для повышения успеваемости нуждаются в дополнительных занятиях и прохождении развивающих программ.

Многие родители задаются вопросом, как научить ребенка решать задачи по математике. Стимул к решению задач появится в случае если это занятие станет привычкой, приносящей удовольствие. Дети с увлечением разбираются в задании, когда оно разложено на составляющие, имеет некоторый эмоциональный окрас. Речь идет не об иррациональных уравнениях, а о простых задачках из учебника для первого класса.

Любую из них можно изобразить на доске и разделить на части:

  • условие;
  • вопрос;
  • решение;
  • ответ.

Условие можно читать несколько раз, рисовать схемы и картинки до тех пор, пока школьник не поймет, о чем идет речь. Следует обращать внимание на вопрос, в котором всегда скрыта часть ответа. Типичная ошибка учеников заключается в вычислении не того, о чем спрашивается.

Решение любой задачи подчиняется правилу: по двум данным находится третье, и так далее, последовательно, до конечного результата. Ответ нужно проверять составлением обратной задачи, это весьма полезное упражнение.

Раскладывание проблемы на составляющие – один из принципов методики американского психолога и математика Д. Пойа, который называл это школой мышления. Практическое пособие для родителей, помогающее научить детей решать задачи – книга педагога Л. Г. Петерсон, в которой также изложены нестандартные подходы к обучению.

Привычка раскладывать сложное задание на простые элементы, действовать по плану, моделировать ситуацию приводит к успеху, поэтому уроки математики начинают доставлять детям удовольствие. Так вы сможете научиться быстро решать задачи по математике.

Основне типы задач по математике

  1. Простые – на сложение и вычитание;
  2. Составные – на сложение и вычитание;
  3. На понимание, зачем нужно умножение и деление;
  4. Простые на умножение и деление;
  5. Составные на все четыре арифметических действия;
  6. Задачи на стоимость, цену, количество;
  7. Задачи на движение.

Разбираем суть задания

Самое главное, что нужно сделать, садясь с малышом за решение задачи, – это разобрать её содержание. Родители должны ясно понимать, к какому типу относится данная задача, какие формулы и правила могут пригодиться. Этот материал нужно доступно объяснить сыну или дочери. Запаситесь терпением. Не стоит вспыхивать гневом, если у вашего малыша что-то не получается. Лучше успокойтесь и попытайтесь рассказать ещё раз. С помощью скандала вы задачу не решите, а вот с помощью трудолюбия – да.

Разобрав содержание, будет понятен и путь её решения. Если ваш ребенок сможет понять, что от него требуют, то в дальнейшем он легко справится сам.

Составляем план решения задачи

Детям редко удаётся рассмотреть последовательность решения задачи. Поэтому родителям придется научить малыша концентрироваться на конкретном алгоритме. Ребёнок должен научиться формировать план решения.

Объясните сыну или дочери, что сначала нужно записать краткое условие задачи, потом нарисовать схему, следом написать формулу, а потом подобрать метод решения. Одновременно с этим расскажите ребенку, что любая цепочка логически правильных мыслей приведёт его к правильному ответу.

Приступаем непосредственно к решению задания

Школьник должен понять, что решать задачи следует по строго продуманной схеме. В младших классах редко дают сложные задачи. Как правило, всё можно решить, просто подставив под нужную формулу нужные числа. Объясните это сыну или дочери.

Также ваш малыш должен быть готов к тому, что он может ошибиться. Морально подготовьте его к этому. Пусть он не расстраивается. Ваша цель – сказать ребенку, что на ошибках учатся, и лучше извлекать из них ценный опыт, чем лить слёзы.

Ученик должен уметь проверять правильность своего ответа. Самый популярный способ проверки – это попросить ребенка сообразить, могла ли такая ситуация произойти на самом деле. В реальности, а не в учебнике. Ещё один из самых распространенных способов – это составить обратную задачу. Для этого подставьте вместо икс цифру, которая у вас получилась. Если числа в вашем решении совпали с условиями задачи, то вы с ребенком всё сделали правильно.

Типичные ошибки в решении задач

  1. Невнимательность. Банальная ошибка не только детей, но и взрослых. Если ребенок невнимательно прочитал условие задачи, то и ответ он получит неверный. Чтобы исправить ошибку, нужно разобраться с условием. Будет хорошо, если вы кратко его запишите.
  2. Ошибка в решении. Есть задачи, в которых требуется найти несколько неизвестных. Поэтому число арифметических действий увеличивается, и малыш может запутаться. В этом случае сначала определите, каких данных не хватает. А потом решайте задачу по цепочке.
  3. Ответ записан неверно. Иногда малыш путается с пояснениями. Объясните ему, что сначала пишут число, а потом расшифровку найденного (сантиметры, литры, килограммы).

Польза от решения математических задач

Многие дети хотят научиться решать логические задачи. Помните, что решение любой задачи – это выполнение последовательности логических действий. Дети, у которых слабо развита логика, не могут ее найти. Специальные занятия позволяют исправить ситуацию.

Стандартные упражнения тренируют левое полушарие головного мозга, отвечающее за логику. Правое, в ведении которого находится интуиция, остается незагруженным, по этой причине творческая жилка, умение мыслить нестандартно отсутствуют. В курсе занятий по ментальной арифметике предлагаются специальные упражнения, синхронно развивающие оба полушария головного мозга. В результате укрепляется память, совершенствуется способность к концентрации внимания. Эти качества имеют важное практическое приложение, в частности, для успешного решения математических задач.

Ненавязчивая родительская помощь, выбор прогрессивных методик позволят вашему ребенку, даже если он больше склонен к гуманитарным наукам, он сможет легко научиться решать задачи и гордиться своими успехами.

amakids.ru

Как научить ребенка решать уравнения

Одна и самых сложных тем в начальной школе — решение уравнений.

Усложняется она двумя фактами:

Во-первых, дети не понимают смысл уравнения. Зачем цифру заменили буквой и что это вообще такое?

Во-вторых, объяснение, которое предлагается детям в школьной программе, непонятно в большинстве случаев даже взрослому:

Для того чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Для того чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Для того чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.

И вот, придя домой ребенок чуть ли не плачет.

На помощь приходят родители. И посмотрев в учебник, решают научить ребенка решать «проще».

Нужно же всего лишь перекинуть на одну сторону цифры, поменяв знак на противоположный, понимаешь?

Смотри, х-3=7

Минус три переносим с плюсом к семерке, считаем и получается х=10

В этом месте у детей обычно происходит сбой программы.

Знак? Поменять? Перенести? Что?

— Мама, папа! Вы ничего не понимате! Нам в школе по-другому объясняли!!!
— Тогда и решай как объясняли!

А в школе, тем временем, продолжается тренировка темы.

1. Вначале нужно определить какой компонент действия нужно найти

5+х=17 — нужно найти неизвестное слагаемое.
х-3=7 — нужно найти неизвестное уменьшаемое.
10-х=4 — нужно найти неизвестное вычитаемое.

2. Теперь нужно вспомнить правило, упомянутое выше

Для того чтобы найти неизвестное слагаемое, нужно…

Как Вы думаете, трудно ли маленькому ученику все это запомнить?

А еще нужно добавить сюда тот факт, что с каждым классом уравнения становятся все сложнее и больше.

В итоге и получается что уравнения для детей одна из самых сложных тем математики в начальной школе.

И даже если ребенок уже в четвертом классе, но у него трудности с решением уравнениями, скорее всего у него проблема с пониманием сути уравнения. И надо просто вернуться назад, к основам.

Сделать это можно за 2 простых шага:

Шаг первый — Надо научить детей понимать уравнения.

Нам потребуется простая кружка.

Напишите пример 3 + 5 = 8

А на дне кружки «х». И, перевернув кружку, закройте цифру «5»

Что под кружкой?

Уверены, ребенок сразу угадает!

Теперь закройте цифру «5». Что под кружкой?

Так можно писать примеры на разные действия и играть. У ребенка происходи понимание, что х = это не просто непонятный знак, а «спрятанная цифра»

Подробнее о технике — в видео

Шаг второй — Научите определять, х в уравнении является целым или частью? Самым большим или «маленьким»?

Для этого нам подойдет техника «Яблоко»

Задайте ребенку вопрос, где в данном уравнении самое большое?

5+х=17

Ребенок ответит «17».

Отлично! Это будет наше яблоко!

Самое большое число — это всегда целое яблоко. Обведем в кружок.

А целое всегда состоит из частей. Давай подчеркнем части.

5 и х — части яблока.

А раз х — это часть. Она больше или меньше? х большое — или маленькое? Как его найти?

Важно отметить, что в таком случае ребенок думает, и понимает, почему, чтобы найти х в данном примере, нужно из 17 вычесть 5.

Умничка!

После того, как ребенок поймет, что ключем к правильному решению уравнений является определить, х — целое или часть, он легко будет решать уравнения.

Потому что запомнить правило, когда понимаешь его гораздо проще, чем наоборот: вызубрить и учиться применять.

Данные техники «Кружка» и «Яблоко» позволяют научить ребенка понимать, что он делает и зачем.

Когда ребенок понимает предмет, он у него начинает получаться.

Когда у ребенка получается, ему это нравится.

Когда нравится, появляется интерес, желание и мотивация.

Когда появляется мотивация — ребенок учится сам.

 

Учите ребенка понимать программу и тогда процесс учебы станет отнимать у Вас значительно меньше времени и сил.

Вам понравилось объяснение данной темы?

Именно так, просто и легко, мы учим родителей объяснять школьную программу в «Школе умных детей».

Хотите научиться объяснять материалы ребенку также доступно и легко, как в этой статье?

Тогда регистрируйтесь бесплатно на 40 уроков школы умных детей прямо сейчас по кнопке ниже.

Получить 40 уроков Школы умных детей бесплатно>>

Вам понравилась статья? Сохраните себе на стену, чтобы не потерять

Похожее

gladtolearn.ru

Как научить ребенка считать примеры в пределах 20

Итак, первые шаги в математической науке уже пройдены, и теперь родителям предстоит объяснить ребенку, как же складывать или вычитать числа в пределах 20-ти. Безусловно, самое главное в математике – понять все премудрости этой науки. Не подсмотреть у соседа по парте, не посчитать на палочках или пальцах (рук и ног), а именно понять, почему нужно поступать так, а не иначе.

Эта сложная наука – математика

Некоторым деткам научиться математическому счету бывает намного труднее, чем, например, научиться читать. Поэтому, чтобы у ребенка появилась так называемая «симпатия» к предмету, родителям придется постараться привить любовь ребенка к математике.

Некоторые родители не желают обременять себя подобными делами и перекладывают обучение вычислениям на плечи педагогов начальной школы. Безусловно, именно учителя и выполняют обучение счету детей, но родители не должны самоустраняться, а обязаны помогать ребенку, помогать находить ошибки, анализировать их.

Даже если вы решили воспользоваться услугами репетитора, заниматься с ребенком дома все равно придется, ведь учитель задает домашние задания, которые следует добросовестно выполнять. В противном случае знания, не подкрепленные практикой, очень быстро забудутся.

Как научить считать в пределах 20-ти

Педагоги с опытом рекомендуют использовать для объяснения азов вычитания и сложения в пределах второго десятка по уже разработанным алгоритмам. Это поможет детям понять и осмыслить, что представляет собой один и два десятка, как складывать числа или вычитать их, если они переваливает через десяток. Занимаясь с ребенком, каждый раз следует проверять, насколько хорошо он понял пройденный материал, закрепить его, и не перескакивать на следующие темы, если в предыдущей остались пробелы.

С чего начать?

Прежде всего ребенок должен знать, как называются числа второго десятка и в каком порядке они идут друг за другом. После этого понадобится двадцать одинаковых деталей чего-либо: кубиков, счетных палочек, карточек от игр и прочее.

Разложите с ребенком кубики (карточки, палочки и прочее) в два ряда по 10 штук в каждом ряду. Первый ряд – это первый десяток, можете даже пронумеровать все кубики первого десятка. Второй ряд – это числа второго десятка. Выложите их один под другим, т.е. кубики с порядковыми номера «один» и «одиннадцать» должны располагаться один над другим, «два» над «двенадцать», «пять» над «пятнадцать» и так далее.

Запоминать названия чисел второго десятка так будет намного проще: 11 – к слову «один» прибавляет окончание «-дцать», лежит на нем «один», так и получает «один-на-дцать». Таким же образом получаем и другие числа «две-на-дцать», «три-на-дцать» и так далее. Повторяйте с ребенком такое упражнение до тех пор, пока он не запомнит числа.

Вычисления без перехода через десяток

Перед тем, как начать обучение счету в пределах двух десятков, ребенок должен четко понимать, где у числа десятки, а где – единицы. Если вы будете объяснять ребенку правила вычисления «на пальцах», то скорее всего, он ничего не поймет. Для обучения вам потребуются наглядные пособия, например, кубики.

Чтобы объяснить ребенку, как делать вычисления без перехода через десяток, попросите его выложить в линию 10 кубиков. Это десяток. Теперь попросите его прибавить к ним еще 3 кубика, поставив их сверху на первые десяток (одиннадцатый кубик на первых, двенадцатый на второй, тринадцатый на третий). Проговаривайте свои действия – «десять плюс три равно тринадцать». Подобный образом составьте и другие числа, без перехода через десяток.

Примерами на сложение и вычитание без перехода через десяток считаются такие, в которых все математические действия совершаются с целым или целыми десятками и еще несколькими единицами.
Например:
10+5=15 16-6=10
10+8=18 17-10=7

После того, как ребенок поймет, как совершается сложение, можно переходить к примерам на вычитание. Если маленький школьник поймет принцип сложения и вычитания чисел до 20-ти, значит у него не будет проблем и с математическими действиями чисел второго, третьего десятка и так далее в пределах сотни.

Вычисления с переходом через десяток

Математические примеры на сложение и вычитание с переходом через десяток несколько сложнее, и поэтому ребенок долен быть готов к этому этапу обучения. Для этого ему необходимо выучить состав чисел первого десятка.

Например, состав числа 2 – то 1 и 1, а состав числа 3 – это две пары чисел: 2 и 1 или 1 и 2, а состав числа 5 – это следующие пары: 1 и 4, 2 и 3, 3 и 2, 4 и 1. И так для каждого числа первого десятка.

Для чего это необходимо? Выполняя арифметические действия ребенку придется сначала письменно, а затем и устно раскладывать прибавляемое или вычитаемое число так, чтобы оно дало десяток при сложении или вычитании с первым.

Вторым важным условием для перехода к этому этапу является быстрый устный счет в пределах первого десятка. Без этого, ребенку будет сложно удержать в голове видимые числа и те, на которые он раскладывает одно из видимых.

Рассмотрим на примере алгоритм решения примеров на сложение с переходом через десяток.

Нужно прибавить к 8 число 6.
8+6=
Запишем этот пример так:
8+(2+4) =

Т.е. мы раскладываем второе слагаемое 6 на два числа, чтобы в сумме с первым слагаемым 8 получить десятку. После того, как мы складываем 8 и 2 и получаем десятку, нам видно, что при добавлении к нему числа 4 мы получим число 14

Значит 8+(2+4) = 14 или 8+6 = 14

Для закрепления рассмотрим еще несколько примеров на сложение.
6+9 =

Этот пример можно записать следующим образом:
6+(4+5) = 15

И еще один
7+8 =

Записываем его в таком виде:
7+(3+5) = 15

Рассмотрим на примере алгоритм решения примеров на вычитание с переходом через десяток.

Чтобы вычесть из одного числа другое с переходом через десятку, нужно разложить вычитаемое таким образом, чтобы у нас получилась десятка при первом отнимании.

15-7 =

В данном случае число 7 состоит из 5 и 2. Запишем этот пример так, чтобы в первом действии у нас получилась десятка
(15-5)-2 = 8

Ребенку легче будет решать такие примеры, если он запомнит, что при вычитании нужно раскладывать вычитаемое так, чтобы сразу же отнять у первого числа единицы.

Например:
14-6=
Раскладываем вычитаемое (6 состоит из 4 и 2)
(14-4)-2 = 8

16-9=
Раскладываем вычитаемое (9 состоит из 6 и 3)
(16-6)-3=7

Т.е. при вычитании какое бы число не нужно было разложить, сначала вычитаем единицы из первого числа, чтоб осталась десятка, а затем уже вычитаем оставшееся число.

Рекомендации родителям

Не стоит рассчитывать, что эти простые истины математики дадутся ребенку с легкостью. Даже если соседская девочка или сын сотрудницы освоил сложение и вычитание за один день, это не повод впадать в отчаяние. Во-первых, все дети разные и у всех индивидуальные особенности усвоения информации, а во-вторых, если кто-то что-то освоил быстрее, еще не значит, что учиться ему будет легче.

Кроме того, при обучении малыша родителям нужно следить за реакцией ребенка на это обучение. Если вы видите, что ему не интересно, попробуйте сменить тактику. Считайте конфеты, яблоки, книжки, можно вырезать одинаковые фигурки для обучения, а затем сделать из них праздничную гирлянду.

Если в определенный период времени ребенок отказывается учиться, у него плохое настроение или самочувствие, не настаивайте. Перенесите время урока на более благоприятный период. Зато у малыша не пропадет желание к учебе, как к чему-то неприятному и неизбежному. Ну и самое главное, проявляйте терпение к его стараниям и почаще хвалите. Для него это очень важно.

childage.ru

Как объяснить ребенку умножение и деление?


Екатерина Ушахина

Можно заставить ребенка просто решать скучные примеры (и ему будет совсем неинтересно), а можно предложить ему решить забавные текстовые задачки в тетради Kumon или сразиться в межпланетном рыцарском турнире на звание лучшего знатока дробей. Второй подход определенно занимательнее: ребенку гораздо больше понравится учить математику в игре.

Ребятам постарше также по душе будут игровые моменты в обучении. Ведь гораздо веселее изучать математику через яркое домино, чем читать длинные главы в учебнике.

Подготовили для вас несколько советов и подборку книг, которые помогут разложить умножение и деление по полочкам.

Умножаем

Что такое умножение? При умножении второе число показывает, сколько раз нужно сложить первое число с самим собой. На рисунке в каждой шеренге стоят 13 человек, а всего шеренг 9. Чтобы подсчитать общее количество людей, нужно число 13 сложить само с собой 9 раз. Это и будет произведением чисел 13 на 9.

Не имеет значения, в каком порядке перемножаются числа: ответ будет одинаковым. Ниже показаны два способа, как можно вычислить произведение.

Умножение на 10, 100, 1000 Для того чтобы умножить целое число на 10, 100, 1000 и т. д., нужно просто дописать справа от этого числа один нуль (0), два нуля (00), три нуля (000) и т. д.

Приемы умножения. Некоторые числа легко умножать, зная особые приемы. В таблице показаны приемы быстрого умножения на 2, 5, 6, 9, 12 и 20.

Делим

Деление позволяет найти, сколько раз одно число содержится в другом. Процесс деления можно представить, например, так: если 10 монет раздать 2 людям, то каждый получит по 5 монет. Или так: 10 монет, разложенные в стопки по 2 монеты, дадут 5 стопок.

Как выполняется деление? Деление одного числа (делимого) на другое (делитель) показывает, сколько делителей содержится в делимом. Например, при делении 10 на 2 мы находим, сколько чисел 2 содержится в числе 10. Результат деления называется частным.

Деление как распределение. Распределение чего-либо — это, по сути, операция деления. Так, если поровну распределить четыре конфеты между двумя людьми, у каждого из них будет по две конфеты.

Как деление связано с умножением? Деление — это операция, обратная умножению. Если вы знаете результат деления, то можете записать соответствующее произведение, и наоборот.

Если 10 (делимое) поделить на 2 (делитель), то получится 5 (частное). Умножая частное (5) на делитель (2), мы получаем значение исходного делимого (10).

Другой подход к делению. Деление также показывает, сколько раз в делимом встречаются группы, равные делителю. Ответом будет то же самое частное. Получилось ровно 10 групп по 3 мяча (без остатка), поэтому 30 : 3 = 10. В этом примере 30 футбольных мячей делятся на группы по 3 мяча.

Книги и тетради, которые помогут закрепить навыки

Арифметикум


Домино, с которым ребенок научится хорошо складывать, вычитать, умножать и делить числа до 100. Игрок должен разместить карточку так, чтобы на оказавшихся рядом клеточках был написан пример и правильный ответ или два примера, в результате решения которых получится одно число.

Вокруг любой клеточки можно расположить сразу несколько карточек: по одной у каждой свободной стороны. Проверить вычисления игроки могут по цветным узорам: если узоры совпадают, ход сделан правильно.

Умножариум


Веселая игра поможет освоить математику

Это домино создано специально для легкого и увлекательного изучения таблицы умножения детьми: вместо традиционных точек на каждой карточке нанесены математические примеры и цифры. Совмещая клетку с примером (например, 5×8) и результат умножения (40), ребенок сразу видит, правильно ли он посчитал пример, благодаря цветовому паттерну, который должен совпасть на двух клетках.

Kumon спешит на помощь

У нас есть множество тетрадей разных уровней сложности, которые помогут выучить таблицу умножения на зубок.

KUMON. Математика. Умножение. Уровень 4

Эта яркая тетрадка научит ребенка умножать многозначные числа в столбик. Шаг за шагом он будет осваивать этот навык, его ждут примеры, которые будут постепенно усложняться, полезные подсказки и, конечно, ключи с ответами в конце тетради для самоконтроля.


Простые задачки научат умножать. Пример из тетради

Kumon. Математика. Деление. Уровень 4

Выполняя задания в этой тетради, ваш ребёнок научится делить многозначные числа в столбик с остатком и без него. Продвигаясь вперёд небольшими последовательными шажками, он обретёт не только математические знания, но и уверенность в своих силах.

Межпланетный рыцарский турнир

Решая примеры из этой книги, ребенок примет участие в настоящем межпланетном состязании! Каждый правильный ответ — ты успешно атаковал противника, каждая ошибка — противник успешно атаковал тебя. Для убедительности в книге есть изображения персонажей, за которых нужно сыграть юному математику, и их соперников, а также фантастические истории про инопланетян. Всех героев можно раскрасить!

Успешных занятий!

deti.mann-ivanov-ferber.ru

Не понимает, как решать задачи

наша учительница грозит во втором классе снижать оценки "за каллиграфию" - всё бы ничего, но она любитель "петелек", причем не только в верхнем соединении буквы "о"
до этого у меня с детьми была договоренность, что первый класс они будут выполнять эти странные требования, но потом я тоже против (тем более за явной абсурдностью и необязательностью) формирования у детей "врачебного почерка"
а тут такой пассаж!
пришлось лезть в методологию
оказалось, что единый нормы отменены, действуют письма от 1998 года, где совершенно четко прописано, что может быть две оценки через слэш - по знаниям и по "общему впечатлению" - общее впечатление как личный субъектив учитель может выставить в тетрадь и в дневник, но эта вторая оценка не идет ни в журнал, ни в расчет итоговых оценок по ведомости! к оформлению (форме краткой записи) тоже относится, есличо
так что дети успокоены, что вопрос "с петельками" будет решен
что не отменяет освоения правил краткой записи, чтобы сами дети не мучились (сидят, ругаются, что можно два десятка задач уже решить, пока придумаешь, как одну кратко записать), но освоение этого - инициатива и радость самих детей

вот подробнее:

Необходимо отметить, что так называемый «Единый орфографический режим» («Единые требования к устной и письменной речи учащихся к проведению письменных работ и проверке тетрадей». Методическое письмо Министерства просвещения РСФСР от 01.09.1980 г. № 364-М) утратил свою силу Приказом Министерства просвещения РСФСР от 18.12.1987 г. № 224. На сегодняшний день нормативных требований к оформлению письменных работ учащихся нет
При оценке письменных (текущих и контрольных) работ учащихся учитель в обязательном порядке руководствуется Методическими письмами Министерства общего и профессионального образования РФ от 19.11.1998 г. № 1561/14-15 «Контроль и оценка результатов обучения в начальной школе (нормы оценок) и Министерства образования РФ от 25.09.2000 г. № 2021/11-13 «Об организации обучения в первом классе четырехлетней начальной школы».

http://docs.cntd.ru/document/901758698
Методическими письмами Министерства общего и профессионального образования РФ от 19.11.1998 г. № 1561/14-15 «Контроль и оценка результатов обучения в начальной школе (нормы оценок)
Каллиграфии НЕТ!

http://www.kids120.ru/flb/srv/u/q/uqgcsv.pdf
оформление в тетрадях

eva.ru

Как объяснить ребенку зачем нужна математика

Я заметила, как часто школьники в последнее время задают родителям вопрос: “Зачем нужно учить математику?”. С развитием компьютеров и электронных гаджетов, казалось бы, любую задачку можно решить за доли минуты, а современные шпаргалки могут обвести вокруг пальца любого учителя. Какой ответ дать детям на такой сложный вопрос? Постараюсь осветить эту тему.

«Математика – царица наук» — это высказывание великого немецкого “короля математиков” Карла Фридриха Гаусса. Ну, скажете Вы, это понятно, о своей профессии все так говорят. А вот и нет! Великий русский ученый Михаил Васильевич Ломоносов, которого в особой любви к математике не заподозришь (химик и физик, астроном, философ, поэт, создатель первого в России учебника грамматики, основатель Московского государственного университета и др.), написал:

«Математику уже затем учить надо, что она ум в порядок приводит».

Мне кажется, это очень точная и емкая цитата, но попробуем разобраться подробнее.

Математика учит мыслить логически, осознанно и ясно.

Не придется вспоминать правило, про которое непонятно, к чему оно и о чем, про которое ничего не помнишь, кроме того, что оно написано в середине страницы. Математику не нужно зубрить, каждое правило и теорема вытекают из предыдущих и складываются в единую систему. Если однажды понять этот принцип — зубрить ничего не придется, ответ можно будет получить с помощью логических рассуждений.

Математика учит подходить к информации системно, структурировать материал.

Это общий подход к изучению любого предмета, будь то русский язык, химия или география: тезисно выделить главные мысли, составить «скелет» темы и логические цепочки, связывающие между собой её отдельные положения.

Математика учит человека терпению и последовательности.

Это одна из немногих наук, которую нельзя начинать изучать, например, с 9 класса, когда ученик осознал значимость этого предмета, но «критическая масса» ошибок и пробелов почти достигла своего апогея. Придется начать с самого начала, терпеливо, тщательно исправляя все свои пробелы.

Математика учит правильно подходить к планированию.

Очень важно в жизни просчитывать свои действия на несколько шагов вперед, видеть последствия принимаемых решений.

Математика развивает абстрактное мышление, учит обобщать и видеть закономерности.

Совсем недавно мама одной из учениц привела пример о том, что историк, первой профессией которого являлась физика (тоже естественная дисциплина), сделал интересные выводы по давно известным историческим фактам. По-моему, этому способствовала его хорошо развитая логика, умение видеть закономерности там, где они были не видны другим. Мне математика позволила достаточно быстро разобраться в современных технологиях, создать свой сайт и проводить занятия онлайн, по Skype.

Наконец, последнее по списку, но отнюдь, не по значению.

Математика может пригодиться в выбранной профессии.

Вопрос, зачем нужна математика, не задают те люди, которые выбрали своей профессией программирование, конструирование, строительство, авиастроение, экономику и финансы, да и многие другие. Ответ на этот вопрос понятен: чтобы составлять сложнейшие алгоритмы программ, проводить расчеты на прочность, конструировать сложные механизмы, заниматься анализом и прогнозированием экономических ситуаций в стране и за рубежом и т.д.

Изучение математики не всем дается легко: иногда из-за того, что ученик пытается старательно вызубрить правила, не понимая смысла, иногда из-за того, что упущен какой-то важный момент в, казалось, уже изученном материале. Важно помнить, что все это исправимо при правильном подходе и упорной, кропотливой работе. Ведь школьные годы — это самое благодатное время для закладывания основ той структуры, из которой по кирпичикам будет складываться логическое мышление, базироваться дальнейшее образование. Не пропустите этот момент!

infourok.ru

Как увлечь ребёнка математикой. Советует Людмила Петерсон

Математика «по Петерсон» широко известна не только в России. В декабре 2018 года учебник Людмилы Георгиевны для начальной и основной школы успешно прошёл все необходимые экспертизы и по многочисленным просьбам учителей и родителей вновь вернулся в федеральный перечень. В начале учебного года мы попросили её рассказать, как помочь ребёнку с математикой, как заинтересовать ею взрослых и почему детям важно чувствовать свой успех.

Первый класс. Рассылка

Ценные советы и бесценная поддержка для родителей первоклассников

Как заинтересовать ребёнка математикой, если преподавание в школе посредственное?

Сначала оговоримся, что «посредственное преподавание» — термин весьма условный. У всех родителей и педагогов разное представление о том, каким оно должно быть. Но в целом я понимаю, что вы имеете в виду: допустим, ребёнок приходит из школы с потухшими глазами, а при одном слове «математика» у него возникает стойкое отвращение.

Давайте попробуем понять, почему детей невозможно оторвать, например, от компьютеров, в отличие от изучения математики. Что их так притягивает в компьютерных играх? Мне кажется, срабатывают несколько факторов:

  • их не заставляют играть;
  • не ругают в случае неуспеха;
  • детям понятна цель (забить гол, преодолеть препятствие), она значима для них, и они достигают её сами;
  • им интересно содержание, оформление;
  • достижения обязательно фиксируются (баллы, уровни), что подпитывает чувство победы;
  • результаты игры значимы для сверстников, и, таким образом, удовлетворяется потребность ребёнка в признании.

Этот набор факторов в достаточной степени обеспечивает механизм мотивации «надо» — «хочу» — «могу». Чтобы заинтересовать ребёнка математикой, можно действовать по аналогии.

Людмила Петерсон
1. Главное — не заставлять, а вдохновлять

Желание заниматься любым делом возникает только в атмосфере взаимного уважения, доверия и доброжелательности. Без близких отношений с детьми родители мало чем могут им помочь, кроме покупки еды, одежды и канцтоваров.

Очень важно понять, что именно вызывает у ребёнка нежелание заниматься. Для этого нужен спокойный безоценочный разговор. Ребёнок должен быть уверен, что вы его спрашиваете не для того, чтобы оценить или дать наставление, а чтобы помочь справиться с тем, что пока не получается.

Дайте ему возможность выговориться. Подумайте вместе о причинах, из-за которых математика перешла в разряд нелюбимых предметов. Всегда легче всё списать на «посредственное преподавание» или на что-то ещё внешнее, что не требует работы над собой. Но это не поможет решить проблему, скорее наоборот. Чтобы вдохновить ребёнка к работе над собой, нужно искренне верить в него и не уставать повторять, что у него всё получится.

2. Не ругать ребёнка за ошибки и плохие отметки

Это не значит оставаться равнодушным к его результатам. Напротив, адекватная реакция родителей на неуспех — это сопереживание и соучастие: «Давай разберёмся, что пока не получилось». Двигаться вперёд помогает не нотация, а осознание своих проблем.

Каждый ребёнок развивается в индивидуальном темпе, поэтому значение имеет не столько результат, сколько динамика относительно самого себя.

Любое усилие — это уже маленькая победа. Верно выполненное задание — ещё один шаг. Получилось то, что раньше не получалось, — следующий

Очень важно замечать и фиксировать любое движение вперёд, даже самое незначительное. Тогда ребёнок почувствует, что он не обвиняемый, родители с ним на одной стороне, они — его друзья и поддержка.

3. Помочь достигнуть цели

Осознание ребёнком того, что пока не получается, поможет подвести его к новой цели. В учёбе это всегда узнать то, что он пока «не знает», научиться тому, что ещё «не умеет». Именно поэтому так важно понять, что конкретно вызывает трудности. Приведу пример подводящего диалога. Предположим, он говорит, что ничего не понимает в математике.

— Совсем ничего? Давай полистаем учебник, тетрадь.

— Такие задания ты умеешь делать? А такие?

Рассматривая учебник вместе с ребёнком, нужно показать сначала самые простые задания, потом — посложнее. И так до тех пор, пока не встретится действительно непонятное. Дальше надо вместе подумать, как выполнять такие задания.

— Отлично! Ты разобрался в том, чему надо научиться (цель). А теперь давай подумаем, как это можно сделать?

Важно дать ребёнку высказаться, выслушать его варианты, подсказать возможности, которые он не назвал. Их может быть много. Например, подойти к учителю, спросить у друга или старшей сестры, разобраться по учебнику самому или вместе с вами.

Главное — наметить план действий и довести его до успешного результата. Дайте ребёнку поверить в себя, обязательно обратите внимание на то, что получилось: «Вот это круто, а говорил — не умеешь!»

4. Поддерживать интерес

Конечно же, ребёнка любого возраста и любого уровня подготовки полезно вовлекать в решение игровых и нестандартных задач. Начинать всегда лучше с малого. Подбросьте задачку, с которой он точно справится, а потом ещё одну, посложнее.

Сейчас в интернете можно найти огромное количество интересных задач любой сложности, не ограничиваясь, разумеется, только нашим учебником. Например, замечательные книги Я. Перельмана «Занимательная математика», «Весёлые задачи», «Быстрый счёт», «Живая математика»; Б. Кордемского «Математическая смекалка»; А. Калининой, Е. Кац, А. Тилипман «Математика в твоих руках», задачи-мультики из TED и многие другие.

Не торопите, не хмыкайте, если он даёт неверный ответ. Восхититесь его достижениями: «Надо же, а я не догадался! Здорово!»

Если у ребёнка горят глаза, когда он рассказывает о задаче, которую смог решить, то он готов к постановке более высоких целей — сначала участие, а затем и победы в разных математических олимпиадах. Их сейчас, помимо Всероссийской олимпиады школьников, множество, очных и онлайн. Главное — следить за тем, чтобы не пропадал интерес, а уровень и темп были для него посильны.

5. Замечать и фиксировать ситуацию успеха

Ребёнок всегда будет стремиться только к тому, что у него получается. Нам всем, как вода для жизни, необходима ситуация успеха. Педагог Василий Сухомлинский писал: «Моральные силы для преодоления своих слабых сторон ребёнок черпает в своих успехах».

При этом успех не связан напрямую с отметками. Например, можно получить пятёрку за списанную работу. Порадоваться нечему. А можно, приложив усилия, дотянуться до тройки — это настоящая победа! Её формула: «затруднение — усилие в его преодолении — успех». Чем больше было усилие, тем радостнее победа.

Взрослые часто хвалят ребёнка лишь за отметки. Мне кажется, гораздо важнее наблюдать за его усилиями, динамикой, достижением намеченных целей и делить с ним радость побед.

6. Сделать победы значимыми семейными событиями

Потребность в признании и уважении окружающих — это одна из базовых потребностей любого человека. Признание порождает уверенность в себе, желание достигать результата, значимого для окружающих.

Поэтому так важно внимание семьи к успехам. Расскажите о победах ребёнка бабушке и дедушке. Вспомните и порадуйтесь во время семейного обеда или на прогулке. Этим вы не только поддержите желание заниматься математикой, но и поможете ребёнку воспитать уважение к себе.

Эти простые правила — лишь некоторая модель, следование которой не навредит. Конечно, важно, чтобы математика была интересна самому родителю: пользы будет тем больше, чем больше он ею увлечён. Ведь вряд ли можно увлечь тем, что тебе неинтересно самому.

Что же делать взрослым, которые в школе математику не любили, а теперь понимают, что упустили что-то важное? С чего начать?

Сейчас таких взрослых становится всё больше. Недавно мне попалась книга профессора математики Университета Твенте в Голландии Нелли Литвак в соавторстве с Аллой Кечеджан «Математика для безнадёжных гуманитариев», которая и родилась как ответ на этот запрос взрослых. Авторы, узнав, как много у книги читателей, создали для них в фейсбуке группу «Математика — великая и ужасная». Сейчас она насчитывает десятки тысяч участников и постоянно растёт.

Книга Нелли Литвак и Аллы Кечеджан «Математика для безнадёжных гуманитариев»  вышла в издательстве «АСТ» в 2019 году

Это только один пример, но можно порекомендовать и много других прекрасных книг. Например, «Большой роман о математике. История мира через призму математики» Микаэля Лонэ. Эта книга выходит в серии «Удовольствие от науки» и помогает понять, насколько математика интересная и захватывающая. Автор рассказывает об истории этой науки с древности до наших дней и о том, какой она станет через десятки, сотни лет.

Книга Микаэля Лонэ «Большой роман о математике. История мира через призму математики» вышла в издательстве «Бомбора» в 2017 году

Существует также много увлекательных видеороликов и фильмов самых разных жанров, которые вдохновляют на изучение математики. Например, ролики «Мы и математика», «Природа в числах», фильмы «Великая тайна математики», «Доказательство», «Умница Уилл Хантинг», «Чувственная математика», «Х+Y», «Любимое уравнение профессора», «Человек, который познал бесконечность», «Тайный знак», «Софья Ковалевская», «Двадцать одно», «Игра на понижение», «Вселенная Стивена Хокинга», «Бесконечность», «Агора», «Пи», «Математика и черт», «I.Q.», «Игры разума».

В интернете есть множество лекций и целостных курсов математики для взрослых, в том числе бесплатных. За пару часов каждый может построить собственную траекторию математического развития. Лучший сценарий — изучать её вместе с детьми, открывать с ними новые математические понятия и формулы, решать интересные задачи, шутить и радоваться успехам. А главное — общаться с ними и заниматься общим делом, на что у родителей сегодня часто не хватает времени и в чём так нуждаются дети.

В 2019 году ваши пособия вернулись в федеральный перечень учебников. Что изменилось для вас с этого момента и какие у вас планы на новый учебный год?

Возвращение учебников в ФПУ, без сомнения, сняло гигантскую проблему, которая мешала работать тысячам школ и детских садов. Не только потому, что учителя снова без проблем могут использовать учебники. Главное, что восстановилась справедливость по отношению к блестящим педагогам, подготовившим за много лет не одно поколение успешных и талантливых детей.

Планов у нас, как всегда, очень много. Для всех педагогов, работающих по нашему непрерывному курсу математики «Учусь учиться», будут проходить бесплатные ежемесячные онлайн-консультации по всем классам.

Методологический вебинар Людмилы Петерсон

В сентябре планируем запустить проект «Умный решебник». Это образовательная онлайн-платформа, где дети и родители смогут не только найти готовые решения к заданиям нашего курса, но и самостоятельно разобраться в причинах затруднений, связанных с решением тех или иных задач.

Мы продолжаем работу Федеральной инновационной площадки и Всероссийского исследовательского проекта, который сегодня объединяет более четырёх тысяч педагогов — лидеров в своих регионах. В этом году Всероссийский проект стал международным. В рамках этих площадок мы разрабатываем и тестируем новые направления для решения проблем, волнующих сегодня всех: как системно и эффективно формировать умение учиться, как измерить и оценить метапредметные результаты образования, как перевести школы с так называемыми низкими результатами обучения в режим развития, как построить интересную для детей систему олимпиадной подготовки по математике с 1-го по 9-й класс. Мы ищем ответы на эти и другие вопросы: создаём образовательные программы и технологии, апробируем их в школах и детских садах.

Людмила Петерсон с участниками на церемонии вручения премии «Знак качества ИМС „Учусь учиться“» в 2018 году

У нас работает и «Детская академия» — это центр дополнительного математического образования для дошкольников с пяти лет и школьников с 1-го по 5-й класс, один из наших молодых проектов. Мы помогаем каждому ребёнку найти свой ответ на вопрос «Зачем мне учить математику?».

Каждый ученик в нашей «Детской академии» проходит комплексный мониторинг склонностей, по результатам которого наши специалисты вместе с самим ребёнком и его родителями составляют индивидуальный маршрут его обучения. Занятия в «Детской академии» больше напоминают увлекательные квесты, где каждый может двигаться в своём темпе по выбранному маршруту.

Дети работают в разновозрастных группах — играют, экспериментируют, строят математические модели, решают в командах проектные задачи. Под каждую группу занятие собирается с помощью специального «конструктора», учитывающего возраст, интересы, особенности детей этой группы. Таким образом, мы реализуем идеи персонализированного обучения (в том числе и в рамках онлайн-образования).

Людмила Петерсон с участниками на церемонии вручения премии «Знак качества ИМС „Учусь учиться“» в 2018 году
В прошлый раз вы говорили, что итогом образования должны становиться не только знания, но и развитие определённых качеств у детей. Можно ли сказать, что современное образование движется в эту сторону?

Да, это ключевой вопрос. От его решения, на мой взгляд, будет зависеть конкурентоспособность школы в будущем. Всё больше родителей ждут, чтобы детям было интересно учиться, чтобы у них росла вера в свои силы, накапливался опыт личных и коллективных побед, чтобы они были готовы к саморазвитию и осознанно выбирали свой путь — вместе с приобретением новых знаний. Всё это достигается метапредметными результатами образования, навыками XXI века.

Для этого нужны новые методы обучения. Однако на практике педагоги часто предпочитают просто объяснять детям темы. Причина ясна. Любая структура, добиваясь эффективности, ориентируется на результат, за который отчитывается. В нашем случае это в основном административные контрольные работы, средний балл ВПР, ОГЭ и ЕГЭ. Эти результаты в той или иной мере достигаются привычным тренингом.

Зачем же педагогам что-то менять? Ведь объяснить детям материал гораздо проще, чем подвести их к самостоятельному открытию

Реальный переход к новой школе требует новых измерителей результатов образования. Сейчас этим направлением занимаются многие, в том числе и мы — как теоретическими исследованиями, так и прикладными разработками в рамках надпредметного курса «Мир деятельности».

Уже сегодня существуют разные варианты критериев и мониторинга метапредметных умений, но пока все они в стадии апробации. Впереди ещё большая работа по их уточнению и совершенствованию.

Насколько ЕГЭ показателен в этом смысле? Или всё-таки он только про знания?

ЕГЭ, как и любой экзамен, конечно же, не только про знания, но и про трудолюбие, ответственность, умение выстроить стратегию своей подготовки, справиться с волнением, сосредоточиться и многое другое. Однако итоговый результат ЕГЭ, с моей точки зрения, не даёт достаточной информации о качестве образования.

Каков был начальный уровень ребёнка и какова динамика его роста? Что он умеет делать сам — без репетиторов и наставников? Умеет ли работать в команде? Какие у него интересы и увлечения? Насколько он стрессоустойчив, если что-то пошло не так? Какие у него цели и планы и как он их ставит и описывает?

Ответы на эти и многие другие вопросы, как мне кажется, не менее важны для оценки результатов, чем полученный на ЕГЭ балл. Более того, именно эти вопросы в первую очередь будут интересовать будущих работодателей наших выпускников.

Поэтому для меня очевидно, что ЕГЭ со временем будет меняться и дополняться, чтобы соответствовать требованиям нашей жизни.

Вы много лет занимаетесь математикой, и, кажется, вам совсем не становится скучно. Расскажите, почему она может быть интересна всем?

Самое точное определение математики дал, с моей точки зрения, великий Анри Пуанкаре: «Математика — это искусство называть разные вещи одним и тем же именем». В этом определении соединились и сущность математического языка — обобщённое описание закономерностей окружающего мира, — и то волшебство и красота, которые несут в себе математические законы. Альберт Эйнштейн всегда удивлялся и восхищался тем, как легко и понятно математика описывает Вселенную.

Возьмём простой ряд чисел: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55… В нём каждое число, начиная с третьего, равно сумме двух предыдущих. Эту последовательность построил Леонардо Фибоначчи более семи веков назад. И вот оказалось, что именно этими числами выражается, как правило, количество лепестков на цветах. Как это может быть?

Но это не всё. Последовательность чисел Фибоначчи наглядно можно изобразить с помощью спирали. Эту форму мы неожиданно найдём в природе на совершенно не связанных между собой объектах: спирали улитки, спирали Галактики, спирали на срезе кочана капусты, в соцветии подсолнуха, эту же форму имеют вихри и циклоны.

Последовательность чисел Фибоначчи

Почему так? Почему отношение чисел в золотом сечении, которое описывает одновременно и пропорции человеческого тела, и расположение листьев на стебле цветка, и правила гармонии в живописи, архитектуре, дизайне, которым уже более 4000 лет, — всё это напрямую связано с отношением соседних чисел ряда Фибоначчи? Неужели возможно этому не удивиться?

Для меня красота математики связана прежде всего с глубиной и универсальностью её законов

Если, например, случайным образом выбрать 1000 человек и построить график их распределения по росту, то получится кривая Гаусса, где верхняя точка графика будет соответствовать среднему росту в группе. Чем больше людей будет в выборке, тем более эстетически совершенная линия будет получаться. Известный английский учёный Фрэнсис Гальтон сказал: «Если бы древние греки знали закон нормального распределения Гаусса, они бы его обожествили».

Математика — живая, развивающаяся наука. Сегодня, конечно же, она описывает далеко не все явления мира, и это означает, что впереди нас ждут удивительные математические открытия. Мы хотим, чтобы дети осваивали эту науку как часть культуры, поэтому главная задача — помочь им увидеть математику в её развитии, прочувствовать красоту и глубину её законов.

Для этого важно создавать среду, в которой дети могут сами совершать открытия — сталкиваться с неизвестным, испытывать вдохновение, выдвигать свои идеи, переживать победы и неудачи, удивляться и восхищаться логикой математики и красотой математических законов. Свою задачу мы видим в том, чтобы создавать для этого педагогические инструменты — технологии, методики, новое содержание математического образования.

mel.fm

Как объяснить ребенку математику? | Обучение

Автор книги «Как объяснить ребенку математику» Кэрол Вордерман не только просто и доступно объясняет основные темы школьной программы, но и приводит любопытные примеры математики в жизни. Даже взрослым будет интересно ее полистать, чтобы освежить в памяти основные понятия и термины.

Проценты в жизни. Как вычислить, на сколько подорожали продукты? И как считать проценты по вкладу или кредиту?

С помощью процентов удобно задавать пропорции. Если мы знаем две величины из трех — процентную долю, величину целого или величину доли, то третью легко вычислить.

С процентами мы сталкиваемся повсюду: в магазинах, газетах, телепередачах. Многие вещи в повседневной жизни измеряются и сравниваются в процентах: скидка при продаже; банковские проценты по ипотеке или ссуде; эффективность электрической лампочки. Даже рекомендации по ежедневному потреблению витаминов и других питательных веществ даются в процентах.

Чтобы грамотно распоряжаться своими деньгами, человеку нужно знать, как и какие налоги с него удерживаются, как он платит проценты по кредитам и как получает их по вкладам.

Какова вероятность выиграть в лотерею?

Вероятность наступления случайного события можно рассчитать. Для этого нужно выразить в виде дроби вероятность какого-либо события, а затем умножить эту дробь на количество возможных случаев наступления события. Чтобы рассчитать результат, нужно сложить вероятности наступления всех вариаций и комбинации цифр, и сразу станет понятно, что выигрыш — это очень и очень большая удача. Не стоит на него надеяться, лучше надеяться на свои знания математики.

Финансовый учет в бизнесе. Как просто прикинуть бизнес-план?

Если ваш малыш говорит, что он будет бизнесменом, но при этом не хочет учить математику, придется его огорчить — она ему очень сильно пригодится. Цель бизнеса — получение прибыли, и математика играет в этом важную роль.

Получить прибыль — значит, получить доход от продажи товара/услуги больший, чем было потрачено на производство этого товара или оказание этой услуги. Между доходом и прибылью есть существенное различие. Доход — это выручка от продажи произведенной продукции. Прибыль — это разница между доходами и расходами, т. е. деньги, которые бизнес заработал.

Устный счет. Как быстро умножить на 25, 9 и 11?

Умение выполнять простые вычисления без калькулятора, с помощью устного счета, очень пригодится в жизни. Узнать стоимость 11 пачек мармеладок или 25 игрушек для всего класса.

Например, чтобы умножить на 10, либо добавляем к числу справа 0, либо сдвигаем запятую на 1 цифру вправо. А чтобы умножить на 20, сначала умножим на 10, а потом на 2.

Как при помощи координат читать карты?

Без знаний и умения ориентироваться на карте даже навигатор не очень поможет. Координаты задают положение точки на карте или графике. Координаты — это пары чисел или букв. Они всегда записываются в круглых скобках через точку с запятой. Порядок координат в паре очень важен. Координаты (E; 1) означают такую позицию на карте: четыре шага по горизонтали слева направо и один шаг по вертикали сверху вниз.

Например, карта города, разбитая на квадраты. Каждый квадрат имеет две координаты — горизонтальную и вертикальную. Любое интересующее нас место на карте можно найти по его координатам. Помните, что сначала идет координата по горизонтали, а потом по вертикали.

По материалам книги «Как объяснить ребенку математику», Кэрол Вордерман.

shkolazhizni.ru


Смотрите также


Семья

Семейные отношения
Каждая отдельная семья являет собой определенную социально-психологическую группу, которая в свою очередь складывается на основе интимных и исключительно доверительных отношений между двумя супругами, а также родителями и детьми. Её общая социальная активность, структура, а также составляющая нравственно-психологическая атмосфера напрямую зависят не только лишь от общих условий и установленных закономерностей, но также от тех довольно специфических обстоятельств, в которых формируется семья, а также живёт и в полной мере функционирует.
Рождение ребенка – испытание на прочность всей семьи
В сказках, как известно, все невзгоды героев заканчиваются свадьбой. А в жизни со свадьбы все только лишь начинается.

Опрос

Полезный для Вас наш сайт?

Да
Нет
Очень полезный
Ничего интересного
Мне все равно